Steps to setup data

Step 1: Load the data in gephi

The files were in GEXF format. I loaded the files in gephi and explored different layouts to visualize the network data.

Step 3: Export the node and edge csv file from Gephi

Since I could not load the GEXF file in R, I had to export the edge and node files as CSV file from gephi and read the table in R and write as a graph file.

Step 3: Convert edge and node data into igraph

Step 4: Summary

Degree Distribution by Grade and Gender

### Heatmap of interactions by Grade ### Data pre-processing

Degree Distribution Histogram

### Network properties

## [1] TRUE
## [1] TRUE
## [1] TRUE
## [1] TRUE
## [1] 10
## [1] 9

Degree Boxplot by Grade

### Giant Components

## [1] 234
## IGRAPH UN-- 234 1148 -- 
## + attr: name (v/c), Label (v/n), timeset (v/l), X0 (v/c), X1
## | (v/c), Age (v/n), Grade (v/c), Type (e/c), Id (e/n), Label
## | (e/l), timeset (e/l), Weight (e/n), X2 (e/n), X3 (e/n),
## | Calc.Weight (e/n)
## [1] 235
## IGRAPH UN-- 235 1328 -- 
## + attr: name (v/c), Label (v/n), timeset (v/l), X0 (v/c), X1
## | (v/c), Age (v/n), Grade (v/c), Type (e/c), Id (e/n), Label
## | (e/l), timeset (e/l), Weight (e/n), X2 (e/n), X3 (e/n),
## | Calc.Weight (e/n)

Centrality Measures Corr Plot

### Betweeness and Closeness Distributon ### ERGM Models

Model 1 for Day 1

simple model no mcmc stored

## 
## ==========================
## Summary of model fit
## ==========================
## 
## Formula:   ga_1.net ~ edges + nodemix("X1", base = c(-1, -2, -3))
## 
## Iterations:  6 out of 20 
## 
## Monte Carlo MLE Results:
##            Estimate Std. Error MCMC % p-value    
## edges      -3.29971    0.09937      0 < 1e-04 ***
## mix.X1.F.F  0.30291    0.11672      0 0.00946 ** 
## mix.X1.F.M -0.08278    0.11159      0 0.45822    
## mix.X1.M.M  0.51647    0.11317      0 < 1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 37792  on 27261  degrees of freedom
##  Residual Deviance:  9448  on 27257  degrees of freedom
##  
## AIC: 9456    BIC: 9489    (Smaller is better.)

### Model 2 added Age difference and MCMC burnin

## 
## ==========================
## Summary of model fit
## ==========================
## 
## Formula:   ga_1.net ~ edges + nodemix("X1", base = c(-1, -2, -3)) + absdiff("Age")
## 
## Iterations:  7 out of 20 
## 
## Monte Carlo MLE Results:
##             Estimate Std. Error MCMC % p-value    
## edges       -0.85584    0.11355      0  <1e-04 ***
## mix.X1.F.F  -0.98609    0.12690      0  <1e-04 ***
## mix.X1.F.M  -1.38049    0.12180      0  <1e-04 ***
## mix.X1.M.M  -0.74723    0.12358      0  <1e-04 ***
## absdiff.Age -1.13837    0.04038      0  <1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 37792  on 27261  degrees of freedom
##  Residual Deviance:  8048  on 27256  degrees of freedom
##  
## AIC: 8058    BIC: 8099    (Smaller is better.)

Model 3

added Degree 1

## 
## ==========================
## Summary of model fit
## ==========================
## 
## Formula:   ga_1.net ~ edges + nodemix("X1", base = c(-1, -2, -3)) + degree(2:4) + 
##     degree(8:9) + absdiff("Age")
## 
## Iterations:  4 out of 20 
## 
## Monte Carlo MLE Results:
##             Estimate Std. Error MCMC % p-value    
## edges       -0.79269    0.12165      0 < 1e-04 ***
## mix.X1.F.F  -0.92745    0.12788      0 < 1e-04 ***
## mix.X1.F.M  -1.35689    0.12719      0 < 1e-04 ***
## mix.X1.M.M  -0.75709    0.12808      0 < 1e-04 ***
## degree2      2.11227    0.43478      0 < 1e-04 ***
## degree3      1.59528    0.35976      0 < 1e-04 ***
## degree4      1.27480    0.30049      0 < 1e-04 ***
## degree8     -0.86100    0.33498      0 0.01017 *  
## degree9     -0.88450    0.31153      0 0.00453 ** 
## absdiff.Age -1.14815    0.04086      0 < 1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 37792  on 27261  degrees of freedom
##  Residual Deviance:  7984  on 27251  degrees of freedom
##  
## AIC: 8004    BIC: 8086    (Smaller is better.)

### Model 4 updated degree(2:4) based on GOF from Model 3 and added gwesp

## 
## ==========================
## Summary of model fit
## ==========================
## 
## Formula:   ga_1.net ~ edges + nodemix("X1", base = c(-1, -2, -3)) + degree(2:4) + 
##     degree(8:9) + absdiff("Age") + gwesp(cutoff = 7)
## 
## Iterations:  20 out of 20 
## 
## Monte Carlo MLE Results:
##             Estimate Std. Error MCMC % p-value    
## edges       -2.57449    0.14157      1  <1e-04 ***
## mix.X1.F.F  -0.61957    0.09787      2  <1e-04 ***
## mix.X1.F.M  -1.03755    0.10462      2  <1e-04 ***
## mix.X1.M.M  -0.56446    0.09720      2  <1e-04 ***
## degree2      0.68043    0.40375      0  0.0919 .  
## degree3      0.78350    0.43555      0  0.0721 .  
## degree4      0.48634    0.45145      0  0.2814    
## degree8     -0.74868    0.62571      0  0.2315    
## degree9     -0.81530    0.55616      0  0.1427    
## absdiff.Age -0.72378    0.02590      1  <1e-04 ***
## gwesp        0.51594    0.02432      0  <1e-04 ***
## gwesp.decay  1.31566    0.03398      1  <1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 37792  on 27261  degrees of freedom
##  Residual Deviance:  7579  on 27249  degrees of freedom
##  
## AIC: 7603    BIC: 7702    (Smaller is better.)
## Sample statistics summary:
## 
## Iterations = 50000:5165000
## Thinning interval = 5000 
## Number of chains = 1 
## Sample size per chain = 1024 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                  Mean      SD Naive SE Time-series SE
## edges        1993.991  85.432  2.66975       16.54264
## mix.X1.F.F    522.465  33.063  1.03323        4.61356
## mix.X1.F.M    709.263  42.547  1.32959        6.85926
## mix.X1.M.M    603.961  37.210  1.16280        4.44671
## degree2         4.781   2.187  0.06836        0.14928
## degree3         5.129   2.587  0.08083        0.28338
## degree4         4.176   2.386  0.07458        0.32020
## degree8         2.431   1.569  0.04904        0.07042
## degree9         2.754   1.655  0.05172        0.05783
## absdiff.Age  1240.912  76.248  2.38274        6.86244
## gwesp        4463.521 268.355  8.38610       49.36679
## gwesp.decay -2884.815 130.673  4.08354       24.39587
## 
## 2. Quantiles for each variable:
## 
##                2.5%     25%   50%   75%   97.5%
## edges        1813.6  1942.8  2002  2053  2140.0
## mix.X1.F.F    458.0   499.0   524   546   584.4
## mix.X1.F.M    625.6   680.8   709   740   787.4
## mix.X1.M.M    532.0   580.0   604   631   671.4
## degree2         1.0     3.0     5     6     9.0
## degree3         1.0     3.0     5     7    11.0
## degree4         0.0     2.0     4     6     9.0
## degree8         0.0     1.0     2     3     6.0
## degree9         0.0     2.0     3     4     6.0
## absdiff.Age  1079.2  1190.0  1241  1294  1386.7
## gwesp        3879.0  4300.5  4487  4657  4921.0
## gwesp.decay -3101.4 -2979.3 -2901 -2804 -2610.1
## 
## 
## Sample statistics cross-correlations:
##                  edges  mix.X1.F.F mix.X1.F.M  mix.X1.M.M     degree2
## edges        1.0000000  0.64854114  0.8473006  0.66909334 -0.34776211
## mix.X1.F.F   0.6485411  1.00000000  0.4125069  0.09486298 -0.24939066
## mix.X1.F.M   0.8473006  0.41250687  1.0000000  0.38999358 -0.30414068
## mix.X1.M.M   0.6690933  0.09486298  0.3899936  1.00000000 -0.21657916
## degree2     -0.3477621 -0.24939066 -0.3041407 -0.21657916  1.00000000
## degree3     -0.4791986 -0.33282169 -0.3939830 -0.30668792  0.11019782
## degree4     -0.5030838 -0.35440506 -0.4080000 -0.31108568  0.16934546
## degree8     -0.2700660 -0.16662641 -0.2320741 -0.18428319  0.06477757
## degree9     -0.1697598 -0.10636084 -0.1633089 -0.11039807  0.04748921
## absdiff.Age  0.8194284  0.49995212  0.6811516  0.58627193 -0.25891210
## gwesp        0.9827517  0.64829234  0.8339447  0.65144855 -0.31941027
## gwesp.decay -0.9627086 -0.61906952 -0.8130220 -0.64600436  0.37562961
##                 degree3     degree4     degree8     degree9 absdiff.Age
## edges       -0.47919863 -0.50308376 -0.27006600 -0.16975981   0.8194284
## mix.X1.F.F  -0.33282169 -0.35440506 -0.16662641 -0.10636084   0.4999521
## mix.X1.F.M  -0.39398301 -0.40800002 -0.23207413 -0.16330886   0.6811516
## mix.X1.M.M  -0.30668792 -0.31108568 -0.18428319 -0.11039807   0.5862719
## degree2      0.11019782  0.16934546  0.06477757  0.04748921  -0.2589121
## degree3      1.00000000  0.22482332  0.07107867  0.02340122  -0.3496623
## degree4      0.22482332  1.00000000  0.07399524  0.05081019  -0.3556496
## degree8      0.07107867  0.07399524  1.00000000  0.05703447  -0.1979823
## degree9      0.02340122  0.05081019  0.05703447  1.00000000  -0.1183437
## absdiff.Age -0.34966228 -0.35564960 -0.19798227 -0.11834366   1.0000000
## gwesp       -0.44102066 -0.47915968 -0.28239490 -0.17741969   0.7699191
## gwesp.decay  0.49707056  0.51928048  0.26575648  0.16758550  -0.7969449
##                  gwesp gwesp.decay
## edges        0.9827517  -0.9627086
## mix.X1.F.F   0.6482923  -0.6190695
## mix.X1.F.M   0.8339447  -0.8130220
## mix.X1.M.M   0.6514485  -0.6460044
## degree2     -0.3194103   0.3756296
## degree3     -0.4410207   0.4970706
## degree4     -0.4791597   0.5192805
## degree8     -0.2823949   0.2657565
## degree9     -0.1774197   0.1675855
## absdiff.Age  0.7699191  -0.7969449
## gwesp        1.0000000  -0.9279204
## gwesp.decay -0.9279204   1.0000000
## 
## Sample statistics auto-correlation:
## Chain 1 
##               edges mix.X1.F.F mix.X1.F.M mix.X1.M.M   degree2   degree3
## Lag 0     1.0000000  1.0000000  1.0000000  1.0000000 1.0000000 1.0000000
## Lag 5000  0.9008796  0.8422287  0.8239322  0.8410396 0.3033610 0.3913391
## Lag 10000 0.8208001  0.7345352  0.7122471  0.7410395 0.2166939 0.3048311
## Lag 15000 0.7541697  0.6563672  0.6269672  0.6585687 0.2042927 0.3007758
## Lag 20000 0.6883340  0.5968886  0.5518889  0.5831834 0.1772719 0.2663521
## Lag 25000 0.6426112  0.5315558  0.4944206  0.5321341 0.1223783 0.2651056
##             degree4    degree8      degree9 absdiff.Age     gwesp
## Lag 0     1.0000000 1.00000000  1.000000000   1.0000000 1.0000000
## Lag 5000  0.3854949 0.07004986  0.050475523   0.7657024 0.8839421
## Lag 10000 0.3547671 0.13405949  0.062588166   0.6057205 0.7897196
## Lag 15000 0.3339432 0.04682326 -0.020676629   0.4896142 0.7199504
## Lag 20000 0.3025383 0.06597519  0.030875139   0.3967045 0.6551354
## Lag 25000 0.3236647 0.09748826 -0.003226675   0.3314613 0.6111442
##           gwesp.decay
## Lag 0       1.0000000
## Lag 5000    0.9043520
## Lag 10000   0.8361846
## Lag 15000   0.7747848
## Lag 20000   0.7190098
## Lag 25000   0.6771558
## 
## Sample statistics burn-in diagnostic (Geweke):
## Chain 1 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##       edges  mix.X1.F.F  mix.X1.F.M  mix.X1.M.M     degree2     degree3 
##      0.3971      0.6746     -0.4449      0.7307     -1.4091     -1.0110 
##     degree4     degree8     degree9 absdiff.Age       gwesp gwesp.decay 
##     -1.0313     -1.0327     -0.3278      0.4542      0.4160     -0.4288 
## 
## Individual P-values (lower = worse):
##       edges  mix.X1.F.F  mix.X1.F.M  mix.X1.M.M     degree2     degree3 
##   0.6913113   0.4999042   0.6563927   0.4649537   0.1587952   0.3120213 
##     degree4     degree8     degree9 absdiff.Age       gwesp gwesp.decay 
##   0.3024063   0.3017263   0.7430849   0.6496927   0.6774031   0.6680948 
## Joint P-value (lower = worse):  0 .

## 
## MCMC diagnostics shown here are from the last round of simulation, prior to computation of final parameter estimates. Because the final estimates are refinements of those used for this simulation run, these diagnostics may understate model performance. To directly assess the performance of the final model on in-model statistics, please use the GOF command: gof(ergmFitObject, GOF=~model).

### Model 6 added Degree 9, nodematch for Grade and increased burnin computation This is much better model. MCMC statistics show some autocorrelation but the joint pvalue is better.

## 
## ==========================
## Summary of model fit
## ==========================
## 
## Formula:   ga_1.net ~ edges + nodemix("X1", base = c(-1, -2, -3)) + nodematch("X0") + 
##     degree(2:4) + degree(9)
## 
## Iterations:  4 out of 20 
## 
## Monte Carlo MLE Results:
##              Estimate Std. Error MCMC % p-value    
## edges        -3.68843    0.08760      0 < 1e-04 ***
## mix.X1.F.F   -0.42904    0.09784      0 < 1e-04 ***
## mix.X1.F.M   -1.04572    0.09695      0 < 1e-04 ***
## mix.X1.M.M   -0.26522    0.09314      0 0.00441 ** 
## nodematch.X0  3.94314    0.07686      0 < 1e-04 ***
## degree2       4.14135    0.33006      0 < 1e-04 ***
## degree3       2.95658    0.33088      0 < 1e-04 ***
## degree4       2.23026    0.29091      0 < 1e-04 ***
## degree9      -0.84032    0.31849      0 0.00833 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 37792  on 27261  degrees of freedom
##  Residual Deviance:  6099  on 27252  degrees of freedom
##  
## AIC: 6117    BIC: 6191    (Smaller is better.)
## Sample statistics summary:
## 
## Iterations = 1e+05:20575000
## Thinning interval = 5000 
## Number of chains = 1 
## Sample size per chain = 4096 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                   Mean     SD Naive SE Time-series SE
## edges        -13.66382 91.473  1.42927       13.80263
## mix.X1.F.F    -5.46997 30.855  0.48210        3.66628
## mix.X1.F.M    -6.93506 37.769  0.59014        4.99763
## mix.X1.M.M    -2.09766 27.852  0.43518        2.54928
## nodematch.X0  -8.74414 63.205  0.98758        9.28293
## degree2        0.75586  5.859  0.09154        0.84932
## degree3        0.91235  5.705  0.08914        0.81774
## degree4        1.16602  6.407  0.10012        0.81451
## degree9       -0.07227  3.259  0.05092        0.06986
## 
## 2. Quantiles for each variable:
## 
##                2.5%    25% 50%   75% 97.5%
## edges        -234.6 -66.25   2 50.00 129.6
## mix.X1.F.F    -72.0 -25.00  -3 17.00  49.0
## mix.X1.F.M    -93.0 -29.00  -2 20.00  55.0
## mix.X1.M.M    -66.0 -20.00   0 17.00  46.0
## nodematch.X0 -162.0 -45.00   1 36.25  90.0
## degree2        -7.0  -3.00   0  4.00  15.0
## degree3        -8.0  -3.00   0  4.00  15.0
## degree4        -9.0  -3.25   0  5.00  16.0
## degree9        -6.0  -2.00   0  2.00   7.0
## 
## 
## Sample statistics cross-correlations:
##                    edges  mix.X1.F.F  mix.X1.F.M  mix.X1.M.M nodematch.X0
## edges         1.00000000  0.85775713  0.92400390  0.77151715   0.97567718
## mix.X1.F.F    0.85775713  1.00000000  0.75043524  0.47152503   0.84151366
## mix.X1.F.M    0.92400390  0.75043524  1.00000000  0.62203424   0.91914532
## mix.X1.M.M    0.77151715  0.47152503  0.62203424  1.00000000   0.75578202
## nodematch.X0  0.97567718  0.84151366  0.91914532  0.75578202   1.00000000
## degree2      -0.83441832 -0.73487368 -0.77051072 -0.60486427  -0.81447905
## degree3      -0.82723780 -0.72330528 -0.76458964 -0.61704506  -0.80854331
## degree4      -0.81875942 -0.71433137 -0.75141628 -0.62239090  -0.79804457
## degree9       0.05053908  0.07348491  0.05065768 -0.00826246   0.04504015
##                 degree2     degree3    degree4     degree9
## edges        -0.8344183 -0.82723780 -0.8187594  0.05053908
## mix.X1.F.F   -0.7348737 -0.72330528 -0.7143314  0.07348491
## mix.X1.F.M   -0.7705107 -0.76458964 -0.7514163  0.05065768
## mix.X1.M.M   -0.6048643 -0.61704506 -0.6223909 -0.00826246
## nodematch.X0 -0.8144790 -0.80854331 -0.7980446  0.04504015
## degree2       1.0000000  0.65407198  0.6260663 -0.13268049
## degree3       0.6540720  1.00000000  0.6033828 -0.09768586
## degree4       0.6260663  0.60338279  1.0000000 -0.09415660
## degree9      -0.1326805 -0.09768586 -0.0941566  1.00000000
## 
## Sample statistics auto-correlation:
## Chain 1 
##               edges mix.X1.F.F mix.X1.F.M mix.X1.M.M nodematch.X0
## Lag 0     1.0000000  1.0000000  1.0000000  1.0000000    1.0000000
## Lag 5000  0.9511848  0.9052019  0.8999225  0.8554150    0.9687199
## Lag 10000 0.9250263  0.8631506  0.8516169  0.7932068    0.9416796
## Lag 15000 0.9049214  0.8312281  0.8170676  0.7516522    0.9180119
## Lag 20000 0.8860790  0.8069029  0.7869850  0.7144684    0.8957487
## Lag 25000 0.8699562  0.7834487  0.7614632  0.6752455    0.8737800
##             degree2   degree3   degree4    degree9
## Lag 0     1.0000000 1.0000000 1.0000000 1.00000000
## Lag 5000  0.7785616 0.7214853 0.7117399 0.05549559
## Lag 10000 0.7399260 0.7013840 0.6892196 0.07378195
## Lag 15000 0.7213618 0.6884767 0.6714934 0.04825174
## Lag 20000 0.7047914 0.6708178 0.6535243 0.02863306
## Lag 25000 0.6991061 0.6530943 0.6388633 0.03976281
## 
## Sample statistics burn-in diagnostic (Geweke):
## Chain 1 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##        edges   mix.X1.F.F   mix.X1.F.M   mix.X1.M.M nodematch.X0 
##       0.5443       0.4658       0.6542       0.9741       0.5935 
##      degree2      degree3      degree4      degree9 
##      -0.6367      -0.4703      -0.5762       0.6156 
## 
## Individual P-values (lower = worse):
##        edges   mix.X1.F.F   mix.X1.F.M   mix.X1.M.M nodematch.X0 
##    0.5862662    0.6413416    0.5129901    0.3300264    0.5528261 
##      degree2      degree3      degree4      degree9 
##    0.5243065    0.6381238    0.5644464    0.5381821 
## Joint P-value (lower = worse):  0.9940786 .

## 
## MCMC diagnostics shown here are from the last round of simulation, prior to computation of final parameter estimates. Because the final estimates are refinements of those used for this simulation run, these diagnostics may understate model performance. To directly assess the performance of the final model on in-model statistics, please use the GOF command: gof(ergmFitObject, GOF=~model).

Model 1 for Day 2

Simple model to begin with

## 
## ==========================
## Summary of model fit
## ==========================
## 
## Formula:   ga_2.net ~ edges + nodemix("X1") + nodematch("X0")
## 
## Iterations:  7 out of 20 
## 
## Monte Carlo MLE Results:
##                        Estimate Std. Error MCMC %  p-value    
## edges                  -6.56876    0.60448      0  < 1e-04 ***
## mix.X1.F.F              2.21000    0.60464      0 0.000258 ***
## mix.X1.F.M              1.81354    0.60285      0 0.002630 ** 
## mix.X1.M.M              2.56825    0.60450      0  < 1e-04 ***
## mix.X1.F.Unknown        2.61712    0.62282      0  < 1e-04 ***
## mix.X1.M.Unknown        2.62221    0.62233      0  < 1e-04 ***
## mix.X1.Unknown.Unknown       NA    0.00000      0       NA    
## nodematch.X0            4.08483    0.07257      0  < 1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 38116  on 27495  degrees of freedom
##  Residual Deviance:  6654  on 27487  degrees of freedom
##  
## AIC: 6670    BIC: 6736    (Smaller is better.)

Model 2 and 3

added age difference and nodemix for gender

## 
## ==========================
## Summary of model fit
## ==========================
## 
## Formula:   ga_2.net ~ edges + nodemix("X1", base = c(-1, -2, -3)) + absdiff("Age")
## 
## Iterations:  7 out of 20 
## 
## Monte Carlo MLE Results:
##             Estimate Std. Error MCMC % p-value    
## edges       -1.12167    0.10696      0  <1e-04 ***
## mix.X1.F.F  -0.71536    0.11890      0  <1e-04 ***
## mix.X1.F.M  -0.98003    0.11338      0  <1e-04 ***
## mix.X1.M.M  -0.47303    0.11663      0  <1e-04 ***
## absdiff.Age -0.96642    0.03418      0  <1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 38116  on 27495  degrees of freedom
##  Residual Deviance:  9290  on 27490  degrees of freedom
##  
## AIC: 9300    BIC: 9341    (Smaller is better.)

## 
## ==========================
## Summary of model fit
## ==========================
## 
## Formula:   ga_2.net ~ edges + nodemix("X1", base = c(-1, -2, -3)) + nodematch("X0") + 
##     absdiff("Age") + degree(2:5) + degree(8) + degree(12)
## 
## Iterations:  20 out of 20 
## 
## Monte Carlo MLE Results:
##              Estimate Std. Error MCMC % p-value    
## edges        -1.26211    0.06646      0  <1e-04 ***
## mix.X1.F.F    0.14024    0.06037      0  0.0202 *  
## mix.X1.F.M   -0.13757    0.05911      0  0.0199 *  
## mix.X1.M.M    0.47062    0.05744      0  <1e-04 ***
## nodematch.X0  2.97452    0.07566      1  <1e-04 ***
## absdiff.Age   0.29011    0.01011      0  <1e-04 ***
## degree2      14.61122         NA     NA      NA    
## degree3       7.65666         NA     NA      NA    
## degree4       4.82784         NA     NA      NA    
## degree5       3.33014         NA     NA      NA    
## degree8      -1.75119         NA     NA      NA    
## degree12      0.11071         NA     NA      NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 38116  on 27495  degrees of freedom
##  Residual Deviance: 28109  on 27483  degrees of freedom
##  
## AIC: 28133    BIC: 28232    (Smaller is better.)

## Sample statistics summary:
## 
## Iterations = 1e+05:5215000
## Thinning interval = 5000 
## Number of chains = 1 
## Sample size per chain = 1024 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##               Mean     SD Naive SE Time-series SE
## edges        10288  74.46   2.3269          6.071
## mix.X1.F.F    2177  35.91   1.1222          3.078
## mix.X1.F.M    3845  46.99   1.4683          3.588
## mix.X1.M.M    2501  36.98   1.1556          3.443
## nodematch.X0  1150  14.56   0.4551          1.771
## absdiff.Age  25710 200.94   6.2795         18.388
## degree2        -10   0.00   0.0000          0.000
## degree3         -8   0.00   0.0000          0.000
## degree4        -10   0.00   0.0000          0.000
## degree5        -14   0.00   0.0000          0.000
## degree8         -8   0.00   0.0000          0.000
## degree12        -9   0.00   0.0000          0.000
## 
## 2. Quantiles for each variable:
## 
##               2.5%   25%   50%   75% 97.5%
## edges        10146 10238 10289 10337 10434
## mix.X1.F.F    2105  2153  2177  2201  2249
## mix.X1.F.M    3752  3814  3844  3879  3938
## mix.X1.M.M    2430  2475  2502  2526  2576
## nodematch.X0  1124  1140  1150  1161  1181
## absdiff.Age  25325 25576 25706 25843 26117
## degree2        -10   -10   -10   -10   -10
## degree3         -8    -8    -8    -8    -8
## degree4        -10   -10   -10   -10   -10
## degree5        -14   -14   -14   -14   -14
## degree8         -8    -8    -8    -8    -8
## degree12        -9    -9    -9    -9    -9
## 
## 
## Sample statistics cross-correlations:
##                  edges mix.X1.F.F  mix.X1.F.M  mix.X1.M.M nodematch.X0
## edges        1.0000000 0.54110445  0.63901830  0.49683419   0.12757846
## mix.X1.F.F   0.5411044 1.00000000  0.04170776  0.06302899   0.08773853
## mix.X1.F.M   0.6390183 0.04170776  1.00000000 -0.02088295   0.04121998
## mix.X1.M.M   0.4968342 0.06302899 -0.02088295  1.00000000   0.12425320
## nodematch.X0 0.1275785 0.08773853  0.04121998  0.12425320   1.00000000
## absdiff.Age  0.7620371 0.36743234  0.36642576  0.35916330  -0.11559052
## degree2             NA         NA          NA          NA           NA
## degree3             NA         NA          NA          NA           NA
## degree4             NA         NA          NA          NA           NA
## degree5             NA         NA          NA          NA           NA
## degree8             NA         NA          NA          NA           NA
## degree12            NA         NA          NA          NA           NA
##              absdiff.Age degree2 degree3 degree4 degree5 degree8 degree12
## edges          0.7620371      NA      NA      NA      NA      NA       NA
## mix.X1.F.F     0.3674323      NA      NA      NA      NA      NA       NA
## mix.X1.F.M     0.3664258      NA      NA      NA      NA      NA       NA
## mix.X1.M.M     0.3591633      NA      NA      NA      NA      NA       NA
## nodematch.X0  -0.1155905      NA      NA      NA      NA      NA       NA
## absdiff.Age    1.0000000      NA      NA      NA      NA      NA       NA
## degree2               NA       1      NA      NA      NA      NA       NA
## degree3               NA      NA       1      NA      NA      NA       NA
## degree4               NA      NA      NA       1      NA      NA       NA
## degree5               NA      NA      NA      NA       1      NA       NA
## degree8               NA      NA      NA      NA      NA       1       NA
## degree12              NA      NA      NA      NA      NA      NA        1
## 
## Sample statistics auto-correlation:
## Chain 1 
##               edges mix.X1.F.F mix.X1.F.M mix.X1.M.M nodematch.X0
## Lag 0     1.0000000  1.0000000  1.0000000  1.0000000    1.0000000
## Lag 5000  0.7435861  0.7651016  0.7128441  0.7973492    0.8759881
## Lag 10000 0.5630193  0.6035315  0.5284366  0.6337419    0.7704237
## Lag 15000 0.4224339  0.4605978  0.3677002  0.4961827    0.6711204
## Lag 20000 0.3164321  0.3457924  0.2691034  0.4018330    0.5953178
## Lag 25000 0.2353476  0.2733610  0.2001352  0.3189354    0.5164186
##           absdiff.Age degree2 degree3 degree4 degree5 degree8 degree12
## Lag 0       1.0000000     NaN     NaN     NaN     NaN     NaN      NaN
## Lag 5000    0.7909311     NaN     NaN     NaN     NaN     NaN      NaN
## Lag 10000   0.6268851     NaN     NaN     NaN     NaN     NaN      NaN
## Lag 15000   0.4979887     NaN     NaN     NaN     NaN     NaN      NaN
## Lag 20000   0.4193958     NaN     NaN     NaN     NaN     NaN      NaN
## Lag 25000   0.3498309     NaN     NaN     NaN     NaN     NaN      NaN
## 
## Sample statistics burn-in diagnostic (Geweke):
## Chain 1 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##        edges   mix.X1.F.F   mix.X1.F.M   mix.X1.M.M nodematch.X0 
##       0.8993       0.4526       0.4244      -0.1207      -0.7585 
##  absdiff.Age      degree2      degree3      degree4      degree5 
##       2.2353          NaN          NaN          NaN          NaN 
##      degree8     degree12 
##          NaN          NaN 
## 
## Individual P-values (lower = worse):
##        edges   mix.X1.F.F   mix.X1.F.M   mix.X1.M.M nodematch.X0 
##   0.36847482   0.65086571   0.67130254   0.90392120   0.44814787 
##  absdiff.Age      degree2      degree3      degree4      degree5 
##   0.02540091          NaN          NaN          NaN          NaN 
##      degree8     degree12 
##          NaN          NaN 
## Joint P-value (lower = worse):  0 .

## 
## MCMC diagnostics shown here are from the last round of simulation, prior to computation of final parameter estimates. Because the final estimates are refinements of those used for this simulation run, these diagnostics may understate model performance. To directly assess the performance of the final model on in-model statistics, please use the GOF command: gof(ergmFitObject, GOF=~model).

Model 4

added Nodematch for Grade and Degrees based on GOF and also increased computational power

## 
## ==========================
## Summary of model fit
## ==========================
## 
## Formula:   ga_2.net ~ edges + nodematch("X1", diff = T) + nodematch("X0", 
##     diff = T) + absdiff("Age")
## 
## Iterations:  6 out of 20 
## 
## Monte Carlo MLE Results:
##                       Estimate Std. Error MCMC %  p-value    
## edges                 -5.03047    0.10436      0  < 1e-04 ***
## nodematch.X1.F         0.28886    0.08749      0 0.000963 ***
## nodematch.X1.M         0.74920    0.08435      0  < 1e-04 ***
## nodematch.X1.Unknown   0.30588    0.75447      0 0.685168    
## nodematch.X0.1A        3.87557    0.16913      0  < 1e-04 ***
## nodematch.X0.1B        4.91508    0.14924      0  < 1e-04 ***
## nodematch.X0.2A        5.08792    0.15856      0  < 1e-04 ***
## nodematch.X0.2B        4.18506    0.14944      0  < 1e-04 ***
## nodematch.X0.3A        4.48412    0.15777      0  < 1e-04 ***
## nodematch.X0.3B        5.27094    0.17080      0  < 1e-04 ***
## nodematch.X0.4A        3.78439    0.18224      0  < 1e-04 ***
## nodematch.X0.4B        3.20159    0.21147      0  < 1e-04 ***
## nodematch.X0.5A        4.79063    0.16781      0  < 1e-04 ***
## nodematch.X0.5B        4.09425    0.16255      0  < 1e-04 ***
## nodematch.X0.Teachers  1.16924    1.27047      0 0.357412    
## absdiff.Age            0.16816    0.02633      0  < 1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 38116  on 27495  degrees of freedom
##  Residual Deviance:  6465  on 27479  degrees of freedom
##  
## AIC: 6497    BIC: 6629    (Smaller is better.)

### Model 5 AIC and BIC are still not looking good. P-values are not significant. GOF is not performing well

## 
## ==========================
## Summary of model fit
## ==========================
## 
## Formula:   ga_2.net ~ edges + nodematch("X1", diff = T) + nodematch("X0") + 
##     absdiff("Age")
## 
## Iterations:  7 out of 20 
## 
## Monte Carlo MLE Results:
##                      Estimate Std. Error MCMC % p-value    
## edges                -5.02913    0.10354      0  <1e-04 ***
## nodematch.X1.F        0.33879    0.08444      0  <1e-04 ***
## nodematch.X1.M        0.69893    0.08213      0  <1e-04 ***
## nodematch.X1.Unknown -1.90835    0.60111      0  0.0015 ** 
## nodematch.X0          4.42033    0.10093      0  <1e-04 ***
## absdiff.Age           0.17097    0.02618      0  <1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 38116  on 27495  degrees of freedom
##  Residual Deviance:  6654  on 27489  degrees of freedom
##  
## AIC: 6666    BIC: 6715    (Smaller is better.)

### Model 6 MCMC statistics have high correlations, and joint p-value is also 0.

## 
## ==========================
## Summary of model fit
## ==========================
## 
## Formula:   ga_2.net ~ edges + nodematch("X1", diff = T) + nodematch("X0") + 
##     absdiff("Age") + degree(1:5)
## 
## Iterations:  20 out of 20 
## 
## Monte Carlo MLE Results:
##                      Estimate Std. Error MCMC % p-value    
## edges                -1.44779    0.02836      0  <1e-04 ***
## nodematch.X1.F        0.32826    0.03589      0  <1e-04 ***
## nodematch.X1.M        0.46388    0.03680      0  <1e-04 ***
## nodematch.X1.Unknown -0.01960    0.24919      1   0.937    
## nodematch.X0          2.87234    0.05881      1  <1e-04 ***
## absdiff.Age           0.20200    0.00702      0  <1e-04 ***
## degree1              15.87292         NA     NA      NA    
## degree2              17.96196         NA     NA      NA    
## degree3              12.06530         NA     NA      NA    
## degree4               9.02377         NA     NA      NA    
## degree5               4.53998         NA     NA      NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance: 38116  on 27495  degrees of freedom
##  Residual Deviance: 21444  on 27484  degrees of freedom
##  
## AIC: 21466    BIC: 21556    (Smaller is better.)
## Sample statistics summary:
## 
## Iterations = 1e+05:5215000
## Thinning interval = 5000 
## Number of chains = 1 
## Sample size per chain = 1024 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                          Mean      SD Naive SE Time-series SE
## edges                 8671.02  71.864   2.2458          5.967
## nodematch.X1.F        1989.81  34.564   1.0801          2.809
## nodematch.X1.M        2035.56  34.482   1.0776          2.926
## nodematch.X1.Unknown    53.56   4.058   0.1268          0.412
## nodematch.X0          1082.63  18.173   0.5679          2.341
## absdiff.Age          20157.12 224.372   7.0116         21.714
## degree1                 -6.00   0.000   0.0000          0.000
## degree2                -10.00   0.000   0.0000          0.000
## degree3                 -8.00   0.000   0.0000          0.000
## degree4                -10.00   0.000   0.0000          0.000
## degree5                -14.00   0.000   0.0000          0.000
## 
## 2. Quantiles for each variable:
## 
##                       2.5%   25%   50%   75% 97.5%
## edges                 8524  8626  8670  8718  8813
## nodematch.X1.F        1918  1967  1992  2015  2054
## nodematch.X1.M        1965  2014  2037  2060  2097
## nodematch.X1.Unknown    45    51    54    56    61
## nodematch.X0          1050  1070  1082  1095  1120
## absdiff.Age          19718 20011 20151 20310 20589
## degree1                 -6    -6    -6    -6    -6
## degree2                -10   -10   -10   -10   -10
## degree3                 -8    -8    -8    -8    -8
## degree4                -10   -10   -10   -10   -10
## degree5                -14   -14   -14   -14   -14
## 
## 
## Sample statistics cross-correlations:
##                          edges nodematch.X1.F nodematch.X1.M
## edges                1.0000000    0.506013821     0.50352757
## nodematch.X1.F       0.5060138    1.000000000     0.01715936
## nodematch.X1.M       0.5035276    0.017159359     1.00000000
## nodematch.X1.Unknown 0.0521729   -0.002297513     0.03169561
## nodematch.X0         0.2109071    0.073681715     0.16862869
## absdiff.Age          0.7277478    0.337087535     0.23001722
## degree1                     NA             NA             NA
## degree2                     NA             NA             NA
## degree3                     NA             NA             NA
## degree4                     NA             NA             NA
## degree5                     NA             NA             NA
##                      nodematch.X1.Unknown nodematch.X0 absdiff.Age degree1
## edges                         0.052172899   0.21090710  0.72774784      NA
## nodematch.X1.F               -0.002297513   0.07368172  0.33708753      NA
## nodematch.X1.M                0.031695606   0.16862869  0.23001722      NA
## nodematch.X1.Unknown          1.000000000   0.03852014  0.09121932      NA
## nodematch.X0                  0.038520143   1.00000000 -0.01723911      NA
## absdiff.Age                   0.091219319  -0.01723911  1.00000000      NA
## degree1                                NA           NA          NA       1
## degree2                                NA           NA          NA      NA
## degree3                                NA           NA          NA      NA
## degree4                                NA           NA          NA      NA
## degree5                                NA           NA          NA      NA
##                      degree2 degree3 degree4 degree5
## edges                     NA      NA      NA      NA
## nodematch.X1.F            NA      NA      NA      NA
## nodematch.X1.M            NA      NA      NA      NA
## nodematch.X1.Unknown      NA      NA      NA      NA
## nodematch.X0              NA      NA      NA      NA
## absdiff.Age               NA      NA      NA      NA
## degree1                   NA      NA      NA      NA
## degree2                    1      NA      NA      NA
## degree3                   NA       1      NA      NA
## degree4                   NA      NA       1      NA
## degree5                   NA      NA      NA       1
## 
## Sample statistics auto-correlation:
## Chain 1 
##               edges nodematch.X1.F nodematch.X1.M nodematch.X1.Unknown
## Lag 0     1.0000000      1.0000000      1.0000000            1.0000000
## Lag 5000  0.7516683      0.7422407      0.7609935            0.8267206
## Lag 10000 0.5801770      0.5547542      0.5915540            0.6732658
## Lag 15000 0.4603087      0.4180819      0.4811029            0.5453079
## Lag 20000 0.3534212      0.3060658      0.3883866            0.4302482
## Lag 25000 0.2528577      0.2418055      0.3192034            0.3312220
##           nodematch.X0 absdiff.Age degree1 degree2 degree3 degree4 degree5
## Lag 0        1.0000000   1.0000000     NaN     NaN     NaN     NaN     NaN
## Lag 5000     0.8887010   0.8109793     NaN     NaN     NaN     NaN     NaN
## Lag 10000    0.7866424   0.6571145     NaN     NaN     NaN     NaN     NaN
## Lag 15000    0.7021136   0.5371072     NaN     NaN     NaN     NaN     NaN
## Lag 20000    0.6355066   0.4372619     NaN     NaN     NaN     NaN     NaN
## Lag 25000    0.5818446   0.3511194     NaN     NaN     NaN     NaN     NaN
## 
## Sample statistics burn-in diagnostic (Geweke):
## Chain 1 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                edges       nodematch.X1.F       nodematch.X1.M 
##               1.5226               0.3117               2.5783 
## nodematch.X1.Unknown         nodematch.X0          absdiff.Age 
##               1.1857               0.4955               0.9459 
##              degree1              degree2              degree3 
##                  NaN                  NaN                  NaN 
##              degree4              degree5 
##                  NaN                  NaN 
## 
## Individual P-values (lower = worse):
##                edges       nodematch.X1.F       nodematch.X1.M 
##          0.127862755          0.755244733          0.009928507 
## nodematch.X1.Unknown         nodematch.X0          absdiff.Age 
##          0.235735400          0.620244055          0.344178144 
##              degree1              degree2              degree3 
##                  NaN                  NaN                  NaN 
##              degree4              degree5 
##                  NaN                  NaN 
## Joint P-value (lower = worse):  0 .

## 
## MCMC diagnostics shown here are from the last round of simulation, prior to computation of final parameter estimates. Because the final estimates are refinements of those used for this simulation run, these diagnostics may understate model performance. To directly assess the performance of the final model on in-model statistics, please use the GOF command: gof(ergmFitObject, GOF=~model).

### Model 7 Still the model does not perform well with updated degree

## 
## ==========================
## Summary of model fit
## ==========================
## 
## Formula:   ga_2.net ~ edges + nodematch("X1", diff = T) + nodematch("X0") + 
##     absdiff("Age") + degree(1:3) + gwesp(0.25, fixed = T)
## 
## Iterations:  20 out of 20 
## 
## Monte Carlo MLE Results:
##                       Estimate Std. Error MCMC % p-value    
## edges                100.92368    0.76745      0  <1e-04 ***
## nodematch.X1.F       -14.39717    0.47522      2  <1e-04 ***
## nodematch.X1.M        -9.95276    0.28433      4  <1e-04 ***
## nodematch.X1.Unknown  10.45895    5.90279      1  0.0764 .  
## nodematch.X0           0.07386    0.21593      3  0.7323    
## absdiff.Age          -30.10102    0.16209      3  <1e-04 ***
## degree1              293.97616    2.58069      2  <1e-04 ***
## degree2              190.52786    2.44390      2  <1e-04 ***
## degree3               78.92477    7.25561      0  <1e-04 ***
## gwesp.fixed.0.25       1.37738    0.55530      0  0.0131 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      Null Deviance:  38116  on 27495  degrees of freedom
##  Residual Deviance: 749561  on 27485  degrees of freedom
##  
## AIC: 749581    BIC: 749663    (Smaller is better.)
## Sample statistics summary:
## 
## Iterations = 16384:1063936
## Thinning interval = 1024 
## Number of chains = 1 
## Sample size per chain = 1024 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                          Mean       SD  Naive SE Time-series SE
## edges                1592.296 251.9596  7.873739      1.950e+02
## nodematch.X1.F       -279.420  23.3252  0.728912      1.709e+01
## nodematch.X1.M       1660.910   6.0511  0.189096      1.916e+00
## nodematch.X1.Unknown   -2.952   0.2435  0.007609      5.940e-02
## nodematch.X0         -475.146  44.7189  1.397465      3.030e+01
## absdiff.Age          2886.300 342.8155 10.712983      2.699e+02
## degree1                92.493   2.2645  0.070766      1.592e-01
## degree2                47.561   4.2033  0.131354      2.025e+00
## degree3                -4.979   0.1451  0.004533      5.369e-03
## gwesp.fixed.0.25     2018.375 325.7808 10.180649      2.513e+02
## 
## 2. Quantiles for each variable:
## 
##                      2.5%  25%  50%  75%  97.5%
## edges                1223 1406 1561 1797 2095.3
## nodematch.X1.F       -310 -297 -285 -265 -231.0
## nodematch.X1.M       1649 1656 1662 1666 1671.0
## nodematch.X1.Unknown   -3   -3   -3   -3   -2.0
## nodematch.X0         -551 -505 -469 -444 -387.6
## absdiff.Age          2383 2634 2852 3172 3567.4
## degree1                89   91   92   94   97.0
## degree2                40   44   48   51   55.0
## degree3                -5   -5   -5   -5   -5.0
## gwesp.fixed.0.25     1541 1775 1977 2283 2669.9
## 
## 
## Sample statistics cross-correlations:
##                            edges nodematch.X1.F nodematch.X1.M
## edges                 1.00000000     0.99132684    -0.12526221
## nodematch.X1.F        0.99132684     1.00000000    -0.12641307
## nodematch.X1.M       -0.12526221    -0.12641307     1.00000000
## nodematch.X1.Unknown  0.39885819     0.42486353     0.23910165
## nodematch.X0          0.98567530     0.96829408    -0.17575053
## absdiff.Age           0.99919003     0.98935111    -0.10005555
## degree1              -0.10033683    -0.09397505     0.01400860
## degree2              -0.83621179    -0.83215863     0.12988549
## degree3               0.02143553     0.03358081    -0.02118473
## gwesp.fixed.0.25      0.99998252     0.99131560    -0.12570837
##                      nodematch.X1.Unknown nodematch.X0 absdiff.Age
## edges                          0.39885819   0.98567530  0.99919003
## nodematch.X1.F                 0.42486353   0.96829408  0.98935111
## nodematch.X1.M                 0.23910165  -0.17575053 -0.10005555
## nodematch.X1.Unknown           1.00000000   0.40156260  0.39339896
## nodematch.X0                   0.40156260   1.00000000  0.98143866
## absdiff.Age                    0.39339896   0.98143866  1.00000000
## degree1                       -0.05702137  -0.09497544 -0.09039615
## degree2                       -0.29938302  -0.83003889 -0.83923287
## degree3                       -0.02913327   0.01103371  0.02204290
## gwesp.fixed.0.25               0.39884983   0.98571721  0.99913458
##                          degree1     degree2     degree3 gwesp.fixed.0.25
## edges                -0.10033683 -0.83621179  0.02143553        0.9999825
## nodematch.X1.F       -0.09397505 -0.83215863  0.03358081        0.9913156
## nodematch.X1.M        0.01400860  0.12988549 -0.02118473       -0.1257084
## nodematch.X1.Unknown -0.05702137 -0.29938302 -0.02913327        0.3988498
## nodematch.X0         -0.09497544 -0.83003889  0.01103371        0.9857172
## absdiff.Age          -0.09039615 -0.83923287  0.02204290        0.9991346
## degree1               1.00000000 -0.44879370  0.04805910       -0.1022904
## degree2              -0.44879370  1.00000000 -0.07427729       -0.8351722
## degree3               0.04805910 -0.07427729  1.00000000        0.0215547
## gwesp.fixed.0.25     -0.10229039 -0.83517222  0.02155470        1.0000000
## 
## Sample statistics auto-correlation:
## Chain 1 
##              edges nodematch.X1.F nodematch.X1.M nodematch.X1.Unknown
## Lag 0    1.0000000      1.0000000      1.0000000            1.0000000
## Lag 1024 0.9967397      0.9963635      0.9806860            0.9520802
## Lag 2048 0.9934831      0.9927468      0.9608453            0.9041605
## Lag 3072 0.9902240      0.9891875      0.9416382            0.8562407
## Lag 4096 0.9869741      0.9856516      0.9214165            0.8083209
## Lag 5120 0.9836984      0.9820377      0.9025006            0.7604012
##          nodematch.X0 absdiff.Age   degree1   degree2     degree3
## Lag 0       1.0000000   1.0000000 1.0000000 1.0000000  1.00000000
## Lag 1024    0.9957502   0.9968509 0.6612215 0.8981141  0.25673777
## Lag 2048    0.9915909   0.9936874 0.4575008 0.8353756 -0.02199897
## Lag 3072    0.9874383   0.9904848 0.3161060 0.7912070 -0.02202041
## Lag 4096    0.9832946   0.9872869 0.1794769 0.7482556 -0.02204185
## Lag 5120    0.9790890   0.9840394 0.1266253 0.7300598  0.02438925
##          gwesp.fixed.0.25
## Lag 0           1.0000000
## Lag 1024        0.9967200
## Lag 2048        0.9934507
## Lag 3072        0.9901912
## Lag 4096        0.9869426
## Lag 5120        0.9836766
## 
## Sample statistics burn-in diagnostic (Geweke):
## Chain 1 
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##                edges       nodematch.X1.F       nodematch.X1.M 
##              -4.2059              -3.7005               1.2851 
## nodematch.X1.Unknown         nodematch.X0          absdiff.Age 
##              -0.8431              -6.4607              -3.9156 
##              degree1              degree2              degree3 
##               2.1624               8.9570              -0.4088 
##     gwesp.fixed.0.25 
##              -4.2399 
## 
## Individual P-values (lower = worse):
##                edges       nodematch.X1.F       nodematch.X1.M 
##         2.600980e-05         2.152092e-04         1.987610e-01 
## nodematch.X1.Unknown         nodematch.X0          absdiff.Age 
##         3.991559e-01         1.042219e-10         9.019679e-05 
##              degree1              degree2              degree3 
##         3.058421e-02         3.336467e-19         6.826770e-01 
##     gwesp.fixed.0.25 
##         2.236109e-05 
## Joint P-value (lower = worse):  0 .

## 
## MCMC diagnostics shown here are from the last round of simulation, prior to computation of final parameter estimates. Because the final estimates are refinements of those used for this simulation run, these diagnostics may understate model performance. To directly assess the performance of the final model on in-model statistics, please use the GOF command: gof(ergmFitObject, GOF=~model).

CUG test

High Assortativity on both Grade and Gender attributes. The Grade has higher assortativity so the assortativity is higher than random generated graphs.

## [1] 0.8271385
## [1] 0.9335869

## 
## Univariate Conditional Uniform Graph Test
## 
## Conditioning Method: edges 
## Graph Type: 
## Diagonal Used: FALSE 
## Replications: 1000 
## 
## Observed Value: 0.8271385 
## Pr(X>=Obs): 0 
## Pr(X<=Obs): 1

## 
## Univariate Conditional Uniform Graph Test
## 
## Conditioning Method: edges 
## Graph Type: 
## Diagonal Used: FALSE 
## Replications: 1000 
## 
## Observed Value: 0.9335869 
## Pr(X>=Obs): 0 
## Pr(X<=Obs): 1

QAP test

Assortativity test passes for QAP test also. High Assotativity for Grade than Gender. The nodes were not randomly assortative.

## 
## QAP Test Results
## 
## Estimated p-values:
##  p(f(perm) >= f(d)): 0 
##  p(f(perm) <= f(d)): 1 
## 
## Test Diagnostics:
##  Test Value (f(d)): 0.8271385 
##  Replications: 1000 
##  Distribution Summary:
##      Min:     -0.07708173 
##      1stQ:    -0.02363722 
##      Med:     -0.005516279 
##      Mean:    -0.00421788 
##      3rdQ:    0.01431553 
##      Max:     0.1021992

## 
## QAP Test Results
## 
## Estimated p-values:
##  p(f(perm) >= f(d)): 0 
##  p(f(perm) <= f(d)): 1 
## 
## Test Diagnostics:
##  Test Value (f(d)): 0.9335869 
##  Replications: 1000 
##  Distribution Summary:
##      Min:     -0.09729193 
##      1stQ:    -0.02399636 
##      Med:     -0.004650142 
##      Mean:    -0.004481402 
##      3rdQ:    0.01362934 
##      Max:     0.1518945

Conditional Probability For Grade Match, Male-Male, Female-Female, Male-Female Edges forming

Highest probability for Same grade nodes to form an edge

##          Case edges nodemixFF nodemixFM nodemixMM nodematch.XO    logodds
## 1         F-M     1         0         1         0            0 -4.7341445
## 2         F-F     1         1         0         0            0 -4.1174639
## 3         M-M     1         0         0         1            0 -3.9536443
## 4 Grade-Match     1         0         0         0            1  0.2547093
##     cond_prob
## 1 0.008713375
## 2 0.016024789
## 3 0.018823536
## 4 0.563335289